“In a warmer world, there will be more fire. That’s a virtual certainty.”

Screen Shot 2016-05-05 at 2.46.29 PM
May 4, 2016 – NASA

The northern forest a “carbon bomb” –  Global Fire Monitoring Center

By Stephen Leahy  [First published Feb 27 2012 (IPS)]

Rising temperatures are drying out northern forests and peatlands, producing bigger and more intense fires. And this will only get much worse as the planet heats up from the use of ever larger amounts of fossil fuels, scientists warned last week at the end of a major science meeting in Vancouver.

“In a warmer world, there will be more fire. That’s a virtual certainty,” said Mike Flannigan, a forest researcher at the University of Alberta, Canada.

“I’d say a doubling or even tripling of fire events is a conservative estimate,” Flannigan told IPS.

While Flannigan’s research reveals forest fire risk may triple in future, a similar increase in peat fires will be far more dangerous. There are millions of square kilometres of tundra and peatlands in the northern hemisphere and they hold more than enough carbon to ramp up global temperatures high enough to render most of the planet uninhabitable if they burn.

A forest fire in Indonesia that ignited peatlands in 1997 smouldered for months, releasing the equivalent of 20 to 40 percent of the worldwide fossil fuel emissions for the entire year, he said.

“There is the potential for significant releases of carbon and other greenhouse gases (from future peat fires),” Flannigan said.

If peat fires release large amounts of carbon, then temperatures will rise faster and higher, leading to further drying of forests and peat, and increasing the likelihood of fires in what is called a positive feedback, he said.

When the increased fire from global warming was first detected in 2006, Johann Goldammer of the Global Fire Monitoring Center at Germany’s Freiburg University called the northern forest a “carbon bomb”.

“It’s sitting there waiting to be ignited, and there is already ignition going on,” Goldammer said according to media reports in 2006.

Flannigan’s research is based on climate projections for 2070 to 2090. Forests will be drier and there will be more lightning with rising temperatures. Around the world, most fires are caused by humans, except in remote regions like boreal forest and treeless tundra, he said.

Lightning sparked the 1,000-square-kilometre tundra fire fuelled by peat in Alaska’s Anaktuvuk River region in 2007. Lightning, once nearly unknown in the far north, is becoming more common as the region is now two to three degrees C warmer. Until the past decade, fire had largely been absent from the tundra over the past 12,000 years.

The Anaktuvuk River peat fire burned for nearly three months, releasing about two million tonnes of CO2 before it was extinguished by snow. That’s about half of the annual emissions of a country like Nepal or Uganda. Surprisingly, the severely burned tundra continued to release CO2 in the following years.

Peat can grow several metres deep beneath the ground. In fact, some peat fires burn right through winter, beneath the snow, then pick up again in the spring, said Flannigan.

About half the world’s soil carbon is locked in northern permafrost and peatland soils, said Merritt Turetsky, an ecologist at Canada’s University of Guelph. This carbon has been accumulating for thousands of years, but fires can release much of this into the atmosphere rapidly, Turetsky said in a release.

Over the past 10 years, fires are burning far more boreal forest than ever before. Longer snow-free seasons, melting permafrost and rising temperatures are large-scale changes underway in the north, Turetsky and colleagues have found.

Other researchers have shown that the average size of forest fires in the boreal zone of western Canada has tripled since the 1980s. Much of Canada’s vast forest region is approaching a tipping point, warned researchers at the Helmholtz Centre for Environmental Research, Germany’s largest research organisation.

This “drastic change” in normal fire pattern has occurred with a only a small increase in temperatures relative to future temperatures, the German researchers concluded in a study published in the December 2011 issue of The American Naturalist.

Worldwide, fires burn an estimated 350 to 450 million ha of forest and grasslands every year. That’s an area larger than the size of India.

The first-ever assessment of forest and bush fires’ impact on human health estimated that 339,000 people die per year from respiratory and other fire-related illness.

“I was surprised the number was this high,” said Fay Johnston, co-author and researcher at University of Tasmania, Hobart, Australia.

Half of the deaths were in Africa and 100,000 in Southeast Asia. Deforestation fires in the tropics are the worst when it comes to human health impacts, she said. Heavy smoke contains high volumes of tiny particles that are very damaging to the lungs and cardiovascular system and can produce heart attacks.

“It takes humans to burn a rainforest. This would be the easiest to stop compared to other fires,” Johnston told IPS.

Forest and bush fires result in many billions of dollars in material losses every year. Last year, fires in drought-stricken Texas resulted in at least five billion dollars in losses, while the Slave Lake, Alberta fire was Canada’s second worst disaster at 750 million dollars.

Future fires will be bigger and more intense and largely beyond our abilities to control or suppress, said Flannigan.

“Virtually all of Russia, Canada, the U.S.” will be impacted, he said

Oceans on the Brink: Dying Plankton, Dead Zones, Acidification

A number of marine diatom cells

By Stephen Leahy

[Originally published Jul 31, 2010 for the Inter Press Service (IPS)]

The oceans are the lifeblood of our planet and plankton its red blood cells. Those vital “red blood cells” have declined more than 40 percent since 1950 and the rate of decline is increasing due to climate change, scientists reported this week. (Update Dec 2016: New analysis show this is an overestimate. See my comment below.)

Phytoplankton are a critical part of our planetary life support system. They produce half of the oxygen we breathe, draw down surface CO2, and ultimately support all of our fisheries,” said

Boris Worm of Canadas Dalhousie University and one of the worlds leading experts on the global oceans.

“An ocean with less phytoplankton will function differently,” said Worm, the co-author of a new study on plankton published this week in Nature. Plankton are the equivalent of grass, trees and other plants that make land green, says study co-author Marlon Lewis, an oceanographer at Dalhousie.

“It is frightening to realise we have lost nearly half of the oceans’ green plants,” Lewis told IPS.

“It looks like the rate of decline is increasing,” he said.

A large phytoplankton bloom in the Northeast Atlantic -NASA Earth Observatory Collection.

[See also my series of articles on ocean acidification]

Independent environmental journalism now depends on public support, learn more about how this works and how you can help, click here.

Climate change is warming the oceans about 0.2C per decade on average. This warmer water tends to stay on top because it is lighter and essentially sits on top of a layer of colder water. This layering, or stratification, is a problem for light-loving plankton because they can only live in the top 100 to 200 meters.

Eventually they run out of nutrients to feed on unless the cold, deeper waters mix with those near the surface. Ocean stratification has been widely observed in the past decade and is occurring in more and larger areas of the world’s oceans. Continue reading

Global Warming Explained… in 320 words

carbon-neutral-pub
Briton’s 1st carbon-neutral pub (Aston-Hayes)

One night in a bar a Russian journalist who I’d just met says:  “This global warming is too complicated for people to know if it’s real or not”.

“You don’t think climate change is happening?” I asked with surprise since we were both covering a big United Nations climate conference.

“No one has been able to give me a good explanation to prove it’s real,” said Yuri (not his real name).

“I can explain it to you in less than one minute,” I replied.

Yuri was sceptical but I went ahead and said:

“The moon has no atmosphere so it is scorching hot (+100C) during the day and bitterly cold (-150C) at night. The Earth has an atmosphere made up of oxygen, nitrogen, carbon dioxide (CO2) and other gases. Over 150 years ago scientists proved that CO2 traps heat from the sun. We also know without any doubt that burning fossil fuels like oil, gas and coal emits CO2.

Measurements, not computer models or theories, measurements show that there is now 42% more CO2 in the atmosphere than 150 years ago before massive use of fossil fuels. That extra CO2 is like putting another blanket on at night even though you are already nice and warm. The Earth is now 1.0 C hotter on average according to the latest measurements. Heat is a form of energy and with so much more energy in our atmosphere our weather system is becoming supercharged resulting in stronger storms, worse heat waves, major changes in when and where rain falls and more.

That’s it.

After a long silence Yuri says “I guess that makes sense…”.

I’m not sure he was convinced but the truth is that climate change is not that complicated.

One additional thing to know is that CO2 is forever. Every little CO2 molecule we add to the atmosphere will continue to trap the sun’s heat for hundreds and thousands of years.

First published Aug 2015

terrifying co2 graph

Paris Climate Agreement – Historic Plan for 3.0C of Warming

serveimage

World hopes to improve the Master Plan to keep warming to 1.5C

The best the Paris Agreement can do to control climate change is to keep the warming to 2.7C according to the international Climate Action Tracker. That is assuming every country meets their individual CO2 emission reduction target does and no natural feedbacks will speed the heating of the planet.

Other analysis find the Agreement will result in global temperatures rising to 3.0C or more. Even 2.7C is far too dangerous for humanity and most natural ecosystems we all depend on. Coral reefs will not survive scientists have warned.

Keeping warming below 2.0 will be more challenging – 1.5 even more so. This something humanity has yet to fully understand.

Here’s some things that will have to change:

* No more exploration for more oil, gas, coal

* The current $650 billion to $1 trillion/a year in fossil fuel subsides shift to alternative energy

* No new oil or gas wells, no new coal mines

* Sharply reduce the manufacture of anything that requires fossil fuel or convert them to run on renewable energy including cars and trucks, buildings, power plants and so on. See Study: Stop Building Carbon Infrastructure by 2018

That’s just for starters.

Climate science uses hard numbers. Those numbers say Fossil fuel use has to go to net zero sometime between 2060 and 2070. There is no negotiation.

Why the Paris Agreement is Historic – In 60 Words

cop21 logo sml

Every country in the world just agreed to:

1. Phase out fossil fuels well before the end of the century

2. Try to keep global warming to less than 1.5C (very difficult since it’s already 1.0C)

3. Rich countries will help poor countries to green their economies, help pay for the damages from climate impacts and help them adapt to future impacts.

[The Paris Agreement is like buying life insurance. It’s for the benefit of our children and grandchildren.]

Costs You $50-75 To Drive 100 Km (62 miles) – Don’t Blame Gas Prices

cost_of_vehicle_ownership

Smartest Thing You Can Do Is Dump Your Car

By Stephen Leahy

Uxbridge Cosmos, Feb 2013

Cars and trucks are extraordinarily expensive. The full cost of driving 100 km is between between $50 and $75 when fuel, wear and tear, insurance, depreciation, and repairs are included. The cost of owning and operating a car, van, SUV or truck ranges between $9,000 to $15,000 a year depending on the purchase price of the vehicle according to automobile clubs like the CAA . That’s a big chunk of aftertax income spent each and every year. Double this for two-car families.

If you pay $50 at the pump about $33 will go directly to oil companies. The gas station gets around a dollar and the rest is for provincial and federal taxes.

Finally ask yourself how many hours a day your vehicle isn’t being used? Most are parked 22 hours a day.

Why not give your car a day off once a week? A ‘No Car Day’ is easy to do, saves money and reduces emissions of climate-heating carbon dioxide (CO2). The average passenger vehicle emits around 4.8 tonnes of CO2 a year.

The biggest savings by far is to get rid of one vehicle. When you consider the full costs of ownership, the $9 000 to $15,000 saved will let you rent vehicles or taking taxi as needed with plenty of cash left over. For maximum savings use the bus or train. A bus from Uxbridge is only $10 to downtown Toronto — 75 km one way. Using your car that 75 km trip really costs $45 not including parking.

New study – drive less lose weight guaranteed: If drivers nationwide traveled 1 mile less by car each day, not only would fuel consumption fall, but annual health care costs could drop by billions of dollars as fewer people would be classified as obese or overweight, Jacobson estimates.

My related articles:

EcoMobility Gaining Ground As Cars/Roads Become Too Expensive

Cars Kill More Children Than Malaria — Leading Cause of Death Ages 5 to 14

Lend Your Car, Save, and Save the World

Bike vs Car on a Hot Planet