Three Simple Rules for Climate-Safe Living

blue-marble-720x696-720x696 copy

R.E.D. Guide to Climate-safe Living

1. Reduce.

Reduce your personal fossil fuel consumption (oil, coal, gas) every way you can.

2. Eliminate.

Eliminate all non-essential activities and products that involve the burning of fossil fuels.

3. Demand.

Demand that business and government provide transport, activities and products without or minimal fossil fuel use.

Reduce. Eliminate. Demand. R.E.D.

Wow! One Bag of Trash in 26 Months

 

shawn williamson
Shawn Williamson explaining how to slash your trash

By Stephen Leahy

On Aug. 10, Shawn Williamson put out his family’s first bag of trash in 26 months. That’s right, 26 months and just one bag of trash for Williamson, his wife, Monica, and their 7-year-old daughter Alyssa.

The Brooklin family recycles, reuses or composts 99.3 per cent of their waste, Williamson calculates. “It’s easier and cheaper,” says the management consultant, who specializes in environmental challenges.

“In my office, there’s a container for compostable materials, one for paper and a small one for garbage.” Asked what’s in the garbage container, Williamson says “cut-up credit cards, old pens, some plastic wrapping … I empty it every four or five months.”

There are only two other small garbage containers in the home. But there are plenty for recycling, composting and a couple of large containers destined for the Goodwill donation centre.

Driving by, no one would guess this is a near-zero-waste home. Williamson insists they don’t have a Spartan lifestyle. In fact, he feels a bit sorry for the rest of us: “If you’re putting out three bags of garbage, you’re wasting an awful lot of time and money.”

It all starts at the store, especially the grocery store. Buying pre-packaged and ready-made food not only creates a lot of trash, it is much more expensive and less nutritious than buying fresh. The Williamsons hit the supermarket once a week with their 12-year-old green plastic baskets and preprinted shopping list, with the weekly essentials listed to make shopping more efficient and eliminate impulse buying.

“We still buy things like potato chips occasionally, and those bags can’t be recycled.”

They also buy in bulk. Toilet paper comes from an office-supply outlet in a giant box that barely fits in the car. Staples such as rice come in 50-pound bags. The house is outfitted with more shelving than most homes but Williamson insists it doesn’t look like a warehouse.

“Try eating only fresh for a few weeks and you’ll see a health improvement . . . you’ll feel better,” Williamson says.

When the family does order takeout, they bring their own plastic containers. “We bring the big ones and the take-out places tend to fill them up for the same price.” Most of this is just common sense on how to be more efficient, and Williamson believes it has saved his family hundreds of hours.

“Just take a few seconds once a week to think about how to do something better and do it.” Before you know it, you will be living better, saving money and maybe losing a bit of weight, says Williamson.

Nearly all food waste and organic matter goes into a back-yard composter, to be turned into rich top soil for the vegetable garden. Williamson says he gets a bit of a workout digging in the compost and he finds it very relaxing. And it beats driving to the gym.

“It’s really all about living better, living simpler and living smarter.”

Incineration vs. diversion

The Williamsons live in Durham Region, where 60 per cent of residential waste is now being diverted from the landfills in Michigan, where much of Ontario’s waste has been going for the past decade. But Durham and York regions are proceeding with plans to build a $230-million garbage incinerator in south Courtice, near Lake Ontario. To operate efficiently, the natural-gas-powered furnaces will need to be fed thousands of tonnes of garbage around the clock. That will take the emphasis off waste reduction and the need to improve recycling programs, says Shawn Williamson, whose family diverts 99.3 per cent of its household waste.

“The simple solution to Ontario’s perennial garbage problem is not to create any waste,” he says. “We saw a big change by converting all our garbage cans throughout the house into recycling bins and putting a tiny container for garbage inside.”

Ontario’s overall waste diversion rate has risen from 21 per cent in 1992 to about 44 per cent. Toronto’s diversion rate was 45 per cent last year, far short of its target of 70 per cent. San Francisco and Los Angeles are already at 70 per cent. More than half of Toronto’s households are in townhouses and high-rise apartments or condos, where recycling and composting must be taken down to basement bins and the diversion rate is a paltry 15 per cent

-30-

First published in The Toronto Star October 21, 2011

What Really Kickstarted China’s Green Energy Revolution?

Screen Shot 2017-03-22 at 8.49.14 PM

I wrote this in 2004 for WIRED when China first announced it was moving away from coal as its primary energy source to green energy. Fascinating to look back and see that China had just 400 Mw of wind energy then. Today it’s world leader with 145 Gw  or 145,000 Mw  (a Gigawatt is 1,000 Megawatts). Interesting to see climate concerns were not the main reason for this build out. Enjoy.

STEPHEN LEAHY SCIENCE 10.04.04 12:00 PM

CHANGE IN THE CHINESE WIND

THE WORLD’S LARGEST wind power project will begin construction this month near Beijing, bringing green energy and cleaner air to the 2008 Summer Olympics and city residents coping with some of the worst air pollution in the world.
The new wind power plant, located 60 miles outside Beijing in Guangting, will generate 400 megawatts when at full capacity, nearly doubling the electrical energy China currently obtains from wind. But that’s just the beginning. Last summer at a climate change conference in Bonn, Germany, China surprised many by announcing it will generate 12 percent of its energy from renewable sources such as wind by 2020.

windmill winter ponies

Pollution is part of the driving force behind China’s newfound passion for green energy, said Yu Jie of Greenpeace China‘s office in Beijing. “Acid rain blankets 70 percent of the country,” Jie said, cutting crop yields, damaging trees and making rivers and lakes too acidic to support fish.

The country’s galloping economic growth over the past 20 years has meant enormous increases in electrical power demands, 75 percent of which come from coal. China is the world’s largest coal-consuming country and home to 16 of the world’s 20 most polluted cities on the planet, according to the World Bank. At least 400,000 people in China die each year from air-pollution-related illnesses, the World Bank reports.

Pollution is not China’s only energy problem. It is also plagued by frequent and widespread power failures because its generating capacity cannot keep pace with industrial and consumer demands. The country leads the world in purchases of TV sets and other appliances.

While China has low-quality coal in abundance, its transportation infrastructure cannot ship enough coal from the mines in the west to the cities in the east, said Jie. Electrical energy self-sufficiency is a crucial goal for the Chinese leadership, especially as oil imports soar to provide gasoline for the 14,000 new motor vehicles being added to its streets every day.

linfen coalminer

These factors have pushed China to invite Western energy experts, including environmental groups like Greenpeace and the National Resources Defense Council, to help China become more energy-efficient and figure out how to produce 20,000 megawatts from wind by 2020.

A megawatt is a million watts, sufficient power to light 10,000 100-watt bulbs, or enough daily electricity for 600 to 1,000 households, depending on energy use. Germany currently leads the world, generating 12,000 megawatts from wind, with the United States well behind at 5,000 megawatts.

China is looking to Germany and Denmark to supply the technology and the policy models upon which to base a new renewable-energy law, said Jie. “This is the first time China has asked outsiders to comment on a proposed law.”

“China’s wind power potential is huge — 500,000, perhaps 600,000 megawatts — but it needs the proper legal framework,” said Corin Millais, executive director of the Brussels-based European Wind Energy Association. The association has contributed input on the Chinese renewable-energy law.

China has a complex mix of state, local and private energy generators, with multiple levels of subsidies and often conflicting regulations. “Changes in state and federal laws are needed, along with clear rules about who sets the price and who owns the wind power farms; otherwise the wind-energy boom won’t happen,” said Millais.

The Chinese want to pursue private-public partnerships with European companies, but because up to 80 percent of the total cost of a wind farm is building it, companies need a reliable price structure for the power they sell, he said.

The new law is expected to be in place by next summer, and if it has the right ingredients, the Chinese landscape will soon blossom with fields of 2- and 3-megawatt wind turbines.

Another reason China is looking to wind is because it is now as cheap as coal, said Kyle Datta, managing director at Colorado’s Rocky Mountain Institute, a leading independent energy research center. And if the health costs associated with coal burning are considered, wind is actually a lot cheaper, said Datta, who researched the Chinese energy market while co-authoring a book, Winning the Oil Endgame: American Innovation for Profits, Jobs and Security.

“People in Chinese cities would also prefer it (wind energy) to all those diesel generators they needed last summer just to keep the lights on some of the time,” Datta said. Solving China’s pollution problems while meeting its energy needs will be difficult and will require a mix of power-generation technologies, including biomass, solar and hydro, he added.

Although China has little interest in nuclear power because of its high cost and security concerns, a few more nuclear plants will also be built, Datta said.

We now have less than 2 years to stop building any new stuff that uses fossil fuels

The original headline of the article said we had 5 years but now it’s less than 2  years to stop building any new stuff that uses fossil fuels.  Here’s lightly updated repost.

Stephen Leahy, International Environmental Journalist

Measurement of CO2 levels in atmosphere

By Stephen Leahy

[Authors note: One of the most difficult and important articles I’ve written in 20 years of environmental journalism. Originally published Sept 6 2014 @Vice Motherboard]

 

Here’s the frightening implication of a landmark study on CO2 emissions:

By 2018, no new cars, homes, schools, factories, or electrical power plants should be built anywhere in the world, ever again, unless they’re either replacements for old ones or carbon neutral. Otherwise greenhouse gas emissions will push global warming past 2˚C of temperature rise worldwide, threatening the survival of many people currently living on the planet.

Every climate expert will tell you we’re on a tight carbon budget as it is—that only so many tons of carbon dioxide (CO2) can be pumped into the atmosphere before the global climate will overheat. We’ve already warmed temperatures 0.85˚C from pre-industrial levels, and the number rises every year. While no one thinks 2˚ C is safeper…

View original post 1,386 more words

Peak salt: is the desalination dream over for the Gulf states?

The Middle East is home to 70% of the world’s desalination plants, but the more water they process, the less economically viable they become

By Stephen Leahy and Katherine Purvis (First published in the Guardian)

Gulf states are among the most water-scarce in the world. With few freshwater resources and low rainfall, many countries have turned to desalination (where salt is removed from seawater) for their clean water needs.

But Gulf states are heading for “peak salt”: the more they desalinate, the more concentrated wastewater, brine, is pumped back into the sea; and as the Gulf becomes saltier, desalination becomes more expensive.

“In time, it’s going to become impossible to use desalination in a way that makes economic sense,” says Gökçe Günel, an anthropologist at the University of Arizona. “The water will become so saline that it will be too expensive to desalinate.”

The Middle East is home to 70% of the world’s desalination plants – mostly in Saudi Arabia, the United Arab Emirates, Kuwait, and Bahrain. Tens of billions of dollars, $24.3bn (£18.8bn) in Saudi Arabia alone, are being invested over the next few years to expand desalination capacity.

The process is cost and energy intensive; it pumps seawater through special filters or boils it to remove the salts. The resulting brine can be nearly twice as salty as normal Gulf waters, according to John Burt, a biologist at New York University Abu Dhabi.

But the 250,000 sq km Gulf is more like a salt-water lake than a sea. It’s shallow, just 35 metres deep on average, and is almost entirely enclosed. The few rivers that feed the Gulf have been dammed or diverted and the region’s hot and dry climate results in high rates of evaporation. Add in a daily dose of around 70m cubic metres of super-salty wastewater from dozens of desalination plants, and it’s not surprising that the water in the Gulf is 25% saltier than normal seawater, says Burt, or that parts are becoming too salty to use.

Peak salt, says Günel, mirrors the concept of peak oil, a popular concept in the 1970s used to describe the point in time when the maximum rate of oil extraction had been reached. “Peak salt describes the point at which desalination becomes unfeasible,” she says.

And studies have shown that the Gulf will only get saltier in the future. Raed Bashitialshaaer, a water resources engineer at Sweden’s Lund University, says that the growth of desalination plants in the region is happening far faster than his own 2011 study estimated.

With groundwater sources either exhausted or non-existent and climate change bringing higher temperatures and less rainfall, Gulf states plan to nearly double the amount of desalination by 2030 (doc). This is bad news for marine life and for the cost of producing drinking water – unless something can be done about the brine.

Farid Benyahia, a chemical engineer at Qatar University, believes he has a solution. He recently patented a process that could eliminate the need for brine disposal by nearly 100%. The process uses pure carbon dioxide (emitted during the desalination process by burning fossil fuels for power) and ammonia to turn brine into baking soda and calcium chloride. Whether the process is cost-effective remains to be seen but Benyahia believes it could be, especially if markets are found for large volumes of the end products.

Other efforts are also under way to reduce desalination’s country-sized carbon footprint which globally accounts for 76m tonnes of carbon dioxide per year – nearly equivalent to Romania’s emissions in 2014.

The Global Clean Water Desalination Alliance was formed in 2015 to tackle this problem by increasing efficiencies and shifting to renewable energy sources, such as solar-powered desalination. Saudi Arabia expects to have a commercial-scale plant operational by 2017 and in California, a proposed solar-powered desalination plant combines innovation, efficiency and design.

Water pricing, says Günel, is also becoming critical to improving water efficiency in the Gulf.

“Climate change policymakers in the region are pushing for water pricing and awareness campaigns around consumption to explain to governments and citizens that they can’t continue to use water in the same way.”

Paris Climate Talks – Canada’s “Thrilled”

Canadian Minister of Environment and Climate Change Catherine McKenna speaks during a news conference, in Paris, France, on Nov. 29, 2015. The Climate Action Network International awarded Canada a second place "fossil of the day" award today at the COP21 climate summit, citing the reluctance of Canadian negotiators to have compensation for weather destruction in poor countries included in the final Paris agreement.THE CANADIAN PRESS/Adrian Wyld
THE CANADIAN PRESS/Adrian Wyld

 

I’m really thrilled Canada was able to play an active part of it.

— Catherine McKenna,  Minister of environment and climate change

Years from now, today may very well be the day our children look back to as the beginning of an ambitious global effort to finally fight climate change. I am proud of the role Canada is playing in reaching this historic and balanced agreement, and I am confident that the world will rise to the challenge of addressing climate change.

— Justin Trudeau, Prime Minister of Canada

Canada: What a difference an election can make

cop21 logo smlThe historic Paris Agreement is front page news in most of Canadian media in part because Canada’s new minister of environment and climate change Catherine McKenna was a key player in the final outcome. Moreover McKenna endorsed the 1.5C target, and lobbied to ensure human and indigenous rights were part of the agreement.

In Paris Canada might have won the “most helpful” or “biggest turn around” award if such things existed — 180 degree change from previous COPs.

For eight years under the previous Stephen Harper government, ‘won’ consecutive “Fossil of the Day” awards for being the most unhelpful country. An award Canada’s previous Minister’s of the Environment took pride in. It was a government so intent on supporting the county’s fossil fuel industry it denied the reality that climate change was already impacting the country.

“We see in Canada the impacts of climate change. We have wildfires in B.C.; we have flooding in Alberta; Prince Edward Island is shrinking; and we see in our Arctic the permafrost is melting and hunters have shorter seasons. Canadians know that we need to act, and that’s what we’re going to do,” McKenna told the Toronto Star.

“Now it’s time to do the hard work,” McKenna added. “We’re going to go home and figure out the plan. . . Every Canadian has to do their part.”

Most Canadian media focused on the details of the agreement nearly all considered it a historic shift to a low-carbon economy. Some focused on the huge challenge of doing so calling it daunting.

So far there is little analysis of the implications of the deal for Canada, the world’s fifth largest crude oil producer and the biggest supplier of oil to the US. It is also the third largest producer of natural gas and one of the top ten miners of coal.

For context here is my four part series revealing how Canada became a very wealthy, fossil-fuelled energy superpower and an international climate pariah.

First published on the Climate News Mosaic Paris Climate Talks Live Blog available here:

Why the Paris Agreement is Historic – In 60 Words

cop21 logo sml

Every country in the world just agreed to:

1. Phase out fossil fuels well before the end of the century

2. Try to keep global warming to less than 1.5C (very difficult since it’s already 1.0C)

3. Rich countries will help poor countries to green their economies, help pay for the damages from climate impacts and help them adapt to future impacts.

[The Paris Agreement is like buying life insurance. It’s for the benefit of our children and grandchildren.]